Molecular genetics of Streptomyces-Regulation of secondary metabolism and morphological differentiation
نویسندگان
چکیده
منابع مشابه
An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor.
We report here the physiological and genetic characterization of an orphan histidine kinase (HK) (OhkA, SCO1596) in Streptomyces coelicolor and its homolog (OhkAsav, SAV_6741) in Streptomyces avermitilis. The physiological analysis showed that the ohkA mutant of S. coelicolor exhibits impaired aerial mycelium formation and sporulation and overproduction of multiple antibiotics on mannitol-soy f...
متن کاملMolecular Genetics and Epidemiology of Vitiligo
Background: Vitiligo is an acquired, idiopathic, and common depigmentation disorder of the skin that affects people of all ages and both sexes equally in the worldwide. Although etiology of the disease is unknown, there are theories such as environment and genetic factors. Methods: In this article, we collected and summarized the appropriate manuscripts regarding the epidemiology and gene...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملPneumoviruses: Molecular Genetics and Reverse Genetics
Pneumoviruses are responsible for significant respiratory disease in their hosts and represent a major problemfor human and animal health. Pneumoviruses are members of the family Paramyxoviridae, subfamilyPneumovirinae and the virus particles consist of a negative-sense, nonsegmented RNA genome within a helical nucleocapsid structure enveloped in a lipid membrane derived from the ho...
متن کاملA microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus.
The Gram-positive, soil-inhabiting, filamentous bacterial genus Streptomyces employs gamma-butyrolactones as chemical signalling molecules or microbial hormones, together with their specific receptors, to regulate morphological and/or physiological differentiation. The A-factor regulatory cascade in streptomycin-producing Streptomyces griseus commences aerial mycelium formation and production o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the agricultural chemical society of Japan
سال: 2003
ISSN: 0002-1407,1883-6844
DOI: 10.1271/nogeikagaku1924.77.852